جداسازی طیفی با استفاده از حسگری فشرده در تصاویر ابرطیفی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده مهندسی برق
- author فرشید خواجه راینی
- adviser محمد حسن قاسمیان یزدی
- publication year 1394
abstract
تصویربرداری ابرطیفی ابزاری مهم در کاربردهای سنجش از دور بشمار می رود. حسگرهای ابرطیفی، نور منعکس شده از سطح زمین را در صدها و یا هزاران باند طیفی اندازه گیری کرده و حجم بالایی از داده را جهت پردازش بعدی به پایگاه زمینی می فرستند. با وجود اینکه این حسگرها وضوح طیفی بسیار بالایی دارند اما وضوح مکانی آنها پایین است. در بعضی از کاربردها، بی درنگ نیاز به داشتن تصویر در سطح زمین داریم و لازمه ی این موضوع، وجود پهنای باند زیاد بین سنسور و ایستگاه زمینی است. در اکثر مواقع، پهنای باند ارتباطی بین ماهواره و ایستگاه زمینی کاهش می یابد و این امر، باعث محدود شدن حجم داده های قابل انتقال است و ما را مستلزم به استفاده از یک تکنیک فشرده سازی می کند.. به دلیل بالا بودن این حجم و به تبع آن، دشوار بودن پردازش و آنالیز مستقیم این اطلاعات و البته قابل فشرده بودن این تصاویر، در این پژوهش دو روش "حسگری فشرده و جداسازی" معرفی شده است.
similar resources
حسگری فشرده تصاویر ابرطیفی با دستهبندی طیفی و بازسازی با تنظیمکننده تغییرات کلی طیفی- مکانی
در این مقاله با توجه به همبستگی باندهای طیفی یک تصویر ابرطیفی، ابتدا این باندها را بر اساس ضرایب همبستگی دستهبندی میکنیم. سپس با استفاده از همبستگی مکانی بین پیکسلهای یک تصویر ابرطیفی و بهکارگیری دستهبندی مذکور، یک روش حسگری فشرده طیفی-مکانی را با دستهبندی طیفی برای تصاویر ابرطیفی پیشنهاد مینماییم. برای بازسازی این تصاویر، روش تنظیمکننده تغییرات کلی طیفی-مکانی پیشنهاد میشود که در آن عل...
full textبررسی تشخیص نفت با استفاده از الگوریتمهای جداسازی طیفی PPI وFPPI در تصاویر ابرطیفی
با رها شدن نفت به اقیانوسها از تانکرها، کشتی و خطوط انتقال نفت تاثیر اجتماعی اقتصادی روی محیط های ساحلی دارد. آشکارسازی سریع نشت نفت میتواند خطرات جدی بر روی محیط زیست و ساکنان ساحلی را کاهش دهد. کشور ما از شمال و جنوب توسط دریا احاطه شده پس حفاظت از دریا امری حیاتی است. سنجندههای فراطیفی مجموعهای از تصاویر مکانی را درباندهای متعدد با قدرت تفکیک طیفی بالا از یک منطقه جمعآوری مینمایند؛ که ب...
full textجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از Semi-NMF و تبدیل PCA
Unmixing of remote-sensing data using nonnegative matrix factorization has been considered recently. To improve performance, additional constraints are added to the cost function. The main challenge is to introduce constraints that lead to better results for unmixing. Correlation between bands of Hyperspectral images is the problem that is paid less attention to it in the unmixing algorithms. I...
full textانتخاب باندهای بهینه جهت بهبود جداسازی طیفی تصاویر ابرطیفی
مدل آنالیز ترکیب خطی به طور گستردهای برای برآورد سهم هر ماده خالص در اختلاط طیفی مورد استفاده قرار میگیرد. راهحل ریاضی مسئله ترکیب، حل مجموعهای از معادلات خطی با استفاده از روش کمترین مربعات میباشد. اما بیشترین منبع خطا در روشهای متداول آنالیز ترکیب طیفی ناشی از عدم امکان محاسبه تغییرات طیفی اعضای خالص در سیر زمان و مکان است. در این فرآیند از اعضای خالص ثابتی برای کل صحنه تصویربرداری استف...
full textجداسازی طیفی و مکانی تصاویر ابرطیفی با استفاده از semi-nmf و تبدیل pca
در سال های اخیر جداسازی داده های سنجش از دور با استفاده از عامل بندی ماتریس نامنفی (nonnegative matrix factorization) مود توجه قرار گرفته است و برای بهبود کارایی آن، به تابع هزینه اقلیدسی قید های کمکی می افزایند. چالش اصلی در این میان معرفی قید های است که بتواند نتایج بهتری را استخراج کند. همبستگی بین باند های تصاویر ابر طیفی مساله ای است که کمتر مورد توجه الگوریتم های جداسازی قرار گرفته است. ا...
full textتجزیه ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه ی طیفی هرس شده
Spectral unmixing of hyperspectral images is one of the most important research fields in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده مهندسی برق
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023